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NONPARAMETRIC REGRESSION 
ON PANEL DATA MODELS WITH 
BINARY RESPONSES: A SURVEY

Ke Yang, Univesity of Hartford

ABSTRACT
This paper serves as an instroduction for economists to the field of 

nonparametric regression models for panel data with binary responses. The focus is 
on how dependences across observations present challenges to estimating the mean 
function efficiently with nonparametric methods. The purpose of this paper is to 
examine the basic motivation of different procedures, cover some theoretical results 
and bandwidth selection, discuss the relative performances of different methods, 
e.g. the nonparametric quasi-likelihood estimation method and other more recently 
developed methods targeting on improving the estimation accuracy using panel data 
structure. JEL Classification: C01, C14

INTRODUCTION
 Panel data with a large number of individuals, with each individual measured 

only over a short period of time, is very common in economic studies. Parametric 
models have long been used to study the behaviorial relationships for such data (see 
Woodrige, 2000 for a good survey on the parametric approach). Very often, one 
would like to relax our assumption about the parametric functional form that captures 
the relationship between the dependent and independent variables (see pages 266-
169 in Pagon and Ullah, 1999 and chapter 8 in Li and Racine, 2007 for a survey 
on nonparametric regression models). As a consequence there has been a growing 
literature in estimating the conditional mean function nonparametrically, see Frolich 
(2006), Hoderlein et al. (2011), Liang (2012) for some examples.  Many competing 
nonparametric methods are currently available, including kernel-based methods, 
regression splines, smoothing splines and wavelet and Fourier series expansions. 
Among them, the local linear estimator has been accepted as an attractive nonparametric 
method of estimating the regression function and its derivatives, due to its appealing 
properties including its simplicity in computation, better boundary performance and 
minmax property (Fan, 1992). However, since the standard local linear estimator does 
not utilize the information in the error structure in its weighing scheme, more recently, 
many researches have focused on how to make the most efficient use of the panel data 
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structure to improve the accuracy of the estimating behavioral relationship.
As it turns out, the problem is far from simple. An obvious method is to 

incorporate the covariance matrix of the error through weighted quasi-likelihood 
function (Severini and Staniswalis, 1994). However, this method produces an estimator 
with far worse asymptotic variance, even compared to simple local linear regression 
on the pooled data. An alternative method - “component estimator” that fits separate 
regression models on each component (panel) in the data and then combines these 
estimators to produce an overall estimator - though more complicated to implement, 
does not utilize the panel data structure and is asymptotically equivalent to the pooled 
estimator.

More recently, a few other procedures have been proposed to improve the 
local linear estimation by taking into consideration the information in the non-spherical 
error. Ruckstuhl et al. (2000) propose a revised version of quasi-likelihood estimator, 
which effectively ignores the with-in panel correlation completely and treat the data 
as if they are independent. Lin and Carroll (2000) refer to it “working independence” 
method. They show that this working independence estimator has a better asymptotic 
properties compared to quasi-likelihood estimator.

This result is “counter intuitive” (Wang, 2003) in that the nonparametric 
regression is actually better-off by ignoring some information in the data. As part 
of the efforts to make proper use of the within panel correlation in local linear like 
estimator, a few other methods were proposed in recent literature. Ruckstuhl et al. 
(2000) propose a two step pre-whitening procedure which involves a correction of the 
residuals with the inverse of the covariance matrix. They show that this estimator could 
have a smaller variance compared to working independence estimator. However, the 
two-step estimation results in a more complicated bias expression that could be bigger 
or smaller than pooled estimator. Martins-Filho and Yao (2009) propose an alternative 
version of the pre-whitening estimator which implements an over-smoothing and 
adjustment of the scale of the correction in the first step. This alternative procedure 
does have a better asymptotic variance while maintain the same bias expression. While 
more appealing in asymptotic, how this over-smoothing helps the estimator’s finite 
sample performance need further exploration.

Wang (2003) proposes another two step procedure to account for the with-
in panel correlation in a different way. In this procedure, whenever an observation, 

say  j ’th, is identified as local, all the points in the same panel are used in the local 

averaging. To avoid the higher bias, the points in that panel other than j  are used only 
through the residuals which are calculated from a previous regression. This estimator, 
like pre-whitening estimator, has a smaller variance but a much more complicated bias 
expression compared to working independence estimator.

For empirical researchers, how to choose among alternative nonparametric 
procedures and apply it to answer an economic question is of essential interest. First, 
it is well known that non-parametric estimators, in addition to be computational 
intensive, also have slower convergence rates compared with parametric estimators, 
which can present some challenges given that empirical researchers always face a 
finite sample. Furthermore performances of nonparametric estimators rely largely on 
the choice of a smoothing parameter, the bandwidths. In practice bandwidths can be 
chosen arbitrarily by the researchers or using some data driven methods, such as cross 
validation, and various plug-in methods (see for example Mammen and Park, 2005). 
Therefore, a carefully selected survey on these available estimators with discussion on 
data driven bandwidth selection methods would be valuable to emperical researchers 
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who are interested in applying these procedures in various scenarios. 
This paper explores how ach of these methods are contructed to improve 

both the robustness and the accuracy of the stimation. To trace the evolution 
of nonparametric methods as a natural extension of their parametric analogy, a 
brief review on some parametric approaches, both likelihood-based and method 
of moment based, is provided. Regarding the nonparametric methods, the focus 
is on how each method utilizes the dependence structure of the data and how 
they compare with each other in their estimation accuracy. In addition some 
current and potential research topics in this area are discussed. Other than this 
section, the paper is organized as follows. In section 2, the logit panel model 
under study is defined and  two well-known parametric methods, i.e. maximum 
likelihood estimation and generalized estimating equation method, are reviewed. 
In section 3, the nonparametric quasi-likelihood estimator and a revised version 
of it, “working independence” estimator are discussed. In section 4, some more 
recently proposed methods are discussed and compared to the quasi-likelihood 
estimator. In section 5, the paper concludes with a summary on the key features 
of each estimator and a discussion on some potential research topics in the area.

PANEL DATA WITH BINARY RESPONSES: PARAMETRIC METHODS
Consider a nonparametric panel data model in which it is assumed that 

there are n  individuals in the sample and each individual is measured at the same   
J  occasions. The response variables are binary (0 or 1) and the covariates could 

be either discrete or continuous variables. Let ),,(= 1 ′iJi
i yyY 


, where 
 
yij 

is the binary random variable and takes value 1 if individual i  has response  1 

(success) at occasion j , and 0 otherwise. Similarly, let ),,(= 1 ′iJi
i xxX 


, a  

pJ ×  where xij is a 1×p  vector representing the covariate vector for individual 

i  at occasion j . The whole sample points is represented by a )( Jn×  by 1+p  

vector, ),( XY


, where                                 and   . The marginal 
distribution of   is assumed to be Bernoulli,

 

                                                                                                          
	          (1)

In a logit regression we assume
 

                                                                                            
                                 (2)

where                                                                                          is the 

probability of success at occasion j ;                                                          

is the variance function for Yij; and β  is a 1×p  vector of parameters that are 

of our interests to estimate. Let ),,(=)(=)( 1 ′iJi
i

ij YE µµβµ 


 be the vector 
containing the marginal probabilities of success for individual   at all   occasions. 
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This is a typical set up for a parametric logit regression. Note that up to now, we have 
not specified a within-subject correlation structure for the individual i  yet.

Likelihood-Based Method
In the case where responses are independent, a regression method can be 

derived based on the joint distribution of the binary responses, 

                                                                                                    	
                                                                                                             	

                 
(3)

which leads to the log-likelihood function taking the following form, 

                                                     
(4)

Then by taking derivative with respective to β  of the likelihood function we have 
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The exponential family distributions have the properties that the derivative of the log-

likelihood with respect to the canonical parameter, iθ


, is 
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and additionally, by assumption,  
 
, so we have 

                                                ( ) i
ii X ∆′∂∂ )(=/
 βµ 	  	                 (7)

where  .  Hence, the derivative of the likelihood 
function with respect to the parameters vector β   can be written as 

                               0=)()(==/
1=1=

i
i

n

i
i

n

i
YXLL µββ 
−′∂∂∂∂ ∑∑

                       
(8)

where ijµ  is an function of  β̂ , the estimate of β  as defined in equation (2). The 

maximum likelihood estimator of β  is the solution to above nonlinear equation 
system.

Liang and Zeger (1986) show that even though the estimator defined in 
equation (8) ignored the correlation structure among the measurements for the same 
individual, it remains to be consistent and asymptotically normal. However, the 
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inverse of the estimated information matrix yields an inconsistent estimator for the 
variance parameters. Liang and Zeger (1986) propose a “robust” variance estimator 
that is an analogue of the “White robust covariance estimator” in the linear model. 
This estimator is consistent regardless the true dependence structure among responses. 

Generalized Estimating Equation (GEE)
The moment-based GEE approach in Liang and Zeger (1986) produces 

consistent estimator of β , given the mean function, ijµ , is specified correctly. The 

GEE estimator for β  are the solution to the following equation system, 

                                             
0=)()()( 1

1=

iiii
n

i
YVD µ

−′ −∑ 	  	                  (9)

 where βµ ′∂∂ /= iiD 
 and iV  is a “working” covariance matrix of iY


 chosen 

arbitrarily by the researcher. The “working” covariance is defined to take the form  
1/21/2 )(= iii

i RV ∆∆ α  where , and 

)(=)( i
i YCorrR


α  is a JJ ×  “Working” correlation matrix defined through the 

vector of parameters α . The equation system defining β̂  is of the same form to 
the quasi-likelihood estimating equations introduced in McCullagh and Nelder (1989, 
Ch.9). Comparing the estimator defined in equation (8) and the one defined in (9), 
equation (9) is a generalization of (8) by introducing the “working” correlation matrix, 

)(αkR .  By plugging in the functional form for )( ′iD  given by the binary model 
specification in (1), we obtain the following estimating equation 

                                              
0=)()( 1

1=

ii
ii

i
n

i
YVX µ

−∆′ −∑ 	  	                 (10)

Some common specifications for the “working” correlation matrix )(αiR  are as 
follows:  

1.  Ji IR =)(α , a JJ ×  identity matrix. This corresponds to the 
“working independence” assumption that essentially ignores the within 
subject correlation and gives estimating equations identical to equation 
(8). No alpha needs to be estimated.

2.  Constant correlation, i.e. JJJi IR ′+− 11)(1=)(


ααα  where JI  

is an JJ ×  identity matrix and J1


 is a 1×J  one vector, α  is a scaler 
correlation coefficient remained to be constant across all measurements 
for the same individual and needs to be estimated.
3.  Autoregressive correlation, i.e. . This 
specification is common when there exists a natural ordering of the 
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measurements in time.

4.  Unstructured Correlation: , In this case, )(αiR  

has 1)/2( −JJ  different elements to be estimated. 
Many other specifications of the correlation structure are available. One of the 

most attractive features of the GEE approach is that it provides a consistent estimate 

of the regression parameter β  that only requires the correct specification of the mean 

function, regardless of whether the )(αiR  is correctly specified.

QUASI-LIKELIHOOD ESTIMATION: NONPARAMETRIC METHODS

Likelihood-Based Local Linear Regression For Independent Data

One can extend the logit model (1) to a nonparametric model where ijθ  is assumed 
to to be a smooth but otherwise unspecified function. Consider a local polynomial 
of order one regression, i.e. local linear regression, (Fan, 1992), with a bandwidth 

h , and the symmetric kernel density function is )(⋅K , normalized without loss of 

generality to have unit variance. Define )/(/1=)( hvKhvKh ⋅ . The basic idea for 

local linear regression is to approximate )(⋅θ  at a given point 0x  using a first order 

Taylor expansion, ( )βθ )()( 0xGX iii


≈ , where }1,1{=)( 00 ′− xXxG J
i

J
i


 and 

β  is a (p + 1) x 1  vector with the first element being )( 0xθ , the mean function 

evaluated at 0x , the value of which is of our interests in estimation.
If one naively assumes that the responses are all independent, then the 

likelihood function of the binary responses weighted by the kernel function can be 
written as, 

                  
	

(11)

Using the maximum-likelihood (ML) procedure discussed in section 2.1, and 

replacing the function )( ii X


θ  with its local approximation ( )β)( 0xGi


, we obtain 
the local linear ML estimating equations as follows, 

             
 	 (12)

where                   ,               and 

)))(((=)( 00 βµµ ′xGx i
i


 is the local linear approximation (at x0) of the mean 
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function evaluaated at sample points. The local linear estimator, ),(ˆ 0 hxθ  is the first 

element of the vector, ),,,(= 10 pββββ   that solves the above nonlinear equation 
system.

 Quasi-likelihood Estimator and Working independence Estimator
Severini and Staniswalis (1994) propose to incorporate the covariance matrix   

Σ  in the construction of the nonparametric estimator, using an approach called quasi-
likelihood maximizing. Lin and Carroll (2000) investigate this idea and show that 
this quasi-likelihood estimator is of the same form as the nonparametric extension 
of parametric GEE (10). The local linear version of this quasi-likelihood estimator, 
is defined to be the first element of the solution vector to either one of the following 
equation: 

                    	 	 (13)

 or 

    
 	 (14)

where  are evaluated at )))(((=)( 00 βµµ ′xGx i
i


. 

The Fisher scoring algorithm can be used to solve the above two equations to get an 

estimator for β . In practice, the estimator β̂  can be updated using iteratively re-
weighted least square to solve 
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where )()()(=)( 00
1

00 xxKVxxC i
i

iii ∆∆ −


 is a working weight matrix and 

)}({)(= 0
1

0 xYxGZ ii
i

ii µβ 
−∆+′ −  is a working vector.

Asymptotic properties of the ),(ˆ 0 hxθ  under (13) is difficult to derive for 

a general working correlation matrix iR  and non-Gaussian data. In the special case 

of Gaussian data with 1=)(⋅∆ ij  and any “working” covariance matrix, Lin and 

Carroll (2000) show that ),(ˆ 0 hxθ  has asymptotic bias equal to )(2/1 0
(2)2 xh θ⋅  

and asymptotic variance equal to c/(nh), where the expression of c  is complicated 
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and its expression can be found in Ruckstuhl et al. (2000, Appendix). Note that the 

asymptotic expression for the bias and variance is free of the distribution of iX


. This 
result indicates that quasi-likelihood estimator is consistent and converges at a rate 
of , regardless of the form of the “working” covariance matrix being used. In 
particular, when observations on the same individual are independently and identically 

distributed with marginal density )(⋅f  and variance Xσ , the bias and variance of the 
quasi-likelihood estimator has an explicit expression as follows. 

                            
)()(

2
=)](),(ˆ[ 2

0
(2)

2

00 hoxhxhxE +− θθθ 	  	 (16)

 and 
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where )1)(/(1= ρρ −+ JJdJ  and 22 1)()
)(

(= X
J

J
J J

dJ
dC σ−
−

. In addition, 

the above variance is minimized when the “working” correlation matrix is taken to be  

Ji IR = , and the variance is 

                              
	  	 (18)

Essentially, this result indicates that in local linear regression, at least for Gaussian 
data, it is optimal to simply ignore the within-subject correlation. Whether this result 
holds for logit model as specified in (1) is still in question.

The approach of ignoring the within-subject corelation, known as “working 
independence” estimator is the most efficient estimator for model (1). To be precise, 
this “working independence” estimator can be defined as the first element of the 
solution vector of the following equation system, 

                 
 	 (19)

Researchers accustomed to correcting standard errors for dependence usually believe 
that adjusting for the within-subject correlation should improve the estimation 
accuracy, as in parametric regression. Wang (2003) argues that this resullt is counter 
intuitive in that correctly specifying the within-subject correlation actually leads to an 
asymptotically less efficient estimator. 
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OTHER NONPARAMETRIC ESTIMATORS 

Pre-Whitening Estimator (PW)
Ruckstuhl et al. (2000) and Martins-filho and Yao (2009) propose a “pre-

whitening” estimator for the Gaussian data, here we extend it to the model (1) as follows: 
 

Step 1: Run a local linear working independence regression of Y


 on X


 and 

construct an arbitrary vector Z


, with ij’th element being zij, as follows: 
	

                       ),(ˆ)ˆ(ˆ= 1/21/2
shXIYZ


θττ −Ω−Ω −−

	  	 (20)

where Ω̂  is a consistent estimator of Ω , the true covariance matrix of the 
response variable, τ  is a arbitrary scaler controlling the scale of the correction,   

hs is a staring bandwidth used with kernel function and )(ˆ X


θ  is a vector of   

)(⋅θ  local linear working independence estimators of   at sample points.

Step 2: The pre-whitening estimator is defined to be the local linear regression 

of Z


 on X


, i.e. the first element in β


 that soloves the following estimating 
equation, 

                                                  (21)

Note that equation (20) is equivalent to 

                                             	  	 (22)

Hence, it is clear that Z


  is a sum of a vector of local linear working independence 

estimates and the residual vector corrected by 1/2ˆ −Ωτ . In practice, the performance of 

this estimator depends on the performance of Ω


 and )(ˆ X


θ .
Assuming that one bandwidth is used throughout, the bias and variance of the 

“pre-whitening” estimator for the Gaussian data can be approximated as follows: 

                                                                                                                                      (23)  
 and

                                        (24)
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 where dυ  and oυ  are diagonal and off-diagonal elements in 1/2−Σ . More specifically, 
they can be written as functions of element in Ω  as suggested in Martins-Filho and 
Yao (2009),

Martins-Filho and Yao (2009) propose another version of “pre-whitening” 
procedure for Gaussian data, denoted here by PW2, that can be shown to be 
asymptotically normal. The PW2 differs from the original version PW in two aspects. 
First, it utilizes an over-smoothing bandwidth in the first step regression. Second, it 

normalizes the 1/2ˆ −Ω  with its diagonal element. In particular, for model (1), the PW2 
is defined as follows, 

 

Step 1: Construct Z


 as: 

)(ˆ)ˆ(1ˆ1= 1/21/2 XIYZ dd


θυυ −Ω−Ω −−

  	  	                                 (25)

where )(ˆ X


θ  is obtained with a starting bandwidth, hs , such that 0→hhs  
as ∞→n .
 

Step 2: A local linear working independence regression of Z


 on X


, as 
defined in (21).

 Note that in a special case that within subject correlation is zero, PW2 is exactly the 
same as local linear estimator. The PW2 estimator has different bias and variance 
expressions from PW estimator: 

                               
	                (26)

 and 

                           
             (27)

Note that when within subject correlation is zero, 22 =συ−
d , so the variance in (27) is 

exactly the same as local linear working independence estimator. When within subject 

correlation is not zero, one can show 22 συ ≤−
d , there PW2 is asymptotically more 

efficient than LL.

	 Marginal Kernel Estimator (MK)
Wang (2003) proposes a marginal kernel estimator for panel data 

as an improvement upon working independence estimator. One appealing 
property of MK is that the variance of the estimator is optimized when 
the correct Ω  is used and this variance is asymptotically smaller than 
the working independence estimator. The MK estimator is defined to be 
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where ),(ˆ sij hxθ  is working independence estimator of )( ijxθ  using a staring 
bandwidth hs. The following assumption is made about the starting bandwidth hs,  

Assumption: The starting bandwidth hs satisfies that )(= 1/23 −nohs  and 

that .  The bias and variance of marginal kernel estimator for 
Gaussian data, assuming that the true value of covariance matrix, Ω , is used for 

calculating the iV , are given by: 

                                                                                                                                    (29)

 and 

                                               (30)

 where dµ  and oµ  represent the diagonal and off-diagonal element in 1−Ω .

Wang (2003) shows that dµ/1  is always less or equal to 2σ , so MK 
estimator has a smaller variance than local linear “working independence” estimator. 
Compared to PW2, the relative size of the two variances depends on the ratio of 

dµ/1  to 2−
dυ , which in turn depends on the specific correlation structure of the 

error terms. The more concise expression of the bias expression for PW2 is a result 
of over-smoothing in the first stage. However, whether this over-smoothing technique 
can improve the estimator’s finite sample performance is not clear.

SUMMARY
In this paper some nonparametric kernel approaches to estimate a logit 

model with longitudinal/panel data structure are surveyed. The parametric GEE 

methodology yields n  consistent estimates of the regression function provided 
that the model for the mean has been correctly specified. The nonparametric 
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extension of GEE methodology provides consistent estimates without requiring the 

specifing the mean function, )(⋅θ . This robustness comes with a the cost of slower 
converging speed, . Both methods produce consistent estimates regardless how 
the correlation matrix are specified. The GEE methodology does improve efficiency 
over the naive maximum likelihood estimator based on independent data, by using 

the correctly specified iV . The similar result does not necessarily hold as we compare 
nonparametric regression approaches. The quasi-likelihood estimator, which utilizes a 

working covariance matrix, iV , is shown to obtain the minimum asymptotic variance 
when the “working independence” covariance matrix is used, i.e., the estimation 
procedure is more accurate by ignoring the correlation structure. The other two 
methodologies, pre-whitening and marginal kernel estimator, does improve upon the 
“working independence” estimator in term of the asymptotic variance by using the 
correctly specified covariance structure.

Asymptotic results are useful largely to the extent that they can serve as a 
guide to what we may find in finite samples that researchers deal with in empirical 
studies. There are a few reasons that the asymptotic results may not serve us well in 
this respects. First, the asymptotic results only compare the leading term in the bias 
and variance expression while in finite sample, the ignored terms of smaller order 
asymptotically may have a major impact on the estimator’s performance. Second, while 
a nonparametric regression allows researchers to estimate the mean function without 
specifying a parametric shape, they still need to choose a value for the smoothing 
parameter, the “bandwidth”. It is well known that the performance of kernel estimators 
are very sensitive to the bandwidth selection. Typically, a bandwidth is chosen through 
minimization of the some criterion function like average mean squared error, which 
is calculated based on the estimator’s asymptotic bias and variance therefore varies 
across estimators. How the bandwidths selected this way affect performance of the 
estimator is apparently not clear by comparing only the large sample results.

Therefore, a well-designed Monte Carlo experiment will serve a useful 
purpose in increasing our understanding of the problem of nonparametric estimation 
of economic relationship from a panel data structure. To make a fair comparison, the 
optimal bandwidth for each estimator could be calculated based on minimizing their 
asymptotic approximation of mean squared errors. In simulation studies, the optimal 
bandwidth can be truly optimal in the sense that the true model specification if known 
to the researcher. Some particularly interesting aspects of panel data model could be 
used in the simulation study to investigate their the impact on the performance of the 
estimators. These include the impact of the relative scale of the noise, different levels 
of the within subject dependency, the number of individuals in the sample relative to 
the number of measurements for each individual,and so on. Also, one could investigate 
the differences in the performance of the estimators that can be attributed to estimation 

of some intermediate values like iV . These results could provide applied researchers 
with information that allows for a better understanding of these competing estimation 
alternatives in finite sample settings.
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